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relating the solution at t 2 to that at t 1. These properties 
of the equations are the basis of the generalized cross 
section of Head, Humble, Clarebrough, Moreton & 
Forwood (1973) which considerably speeds up the 
calculation of dislocation images. 

APPENDIX B 

The equations relating the amplitudes are 

d¥'(z) 

dz 
- B'(z) V'(z) + S(z) exp (-iq~z)¥(z) (B1) 

d¥(z) 
- -  - [3(z) W(z), (B2) 

dz 

where the elements of 13 (z) are 

y t j g.du(r) 
Cg Cg ~ exp [i(k I - k ~) z] 

g dz 

and scattered states are denoted by primed quantities: 

dtG'(z) ¥'(z)] 
= G'(z) S(z)exp (-iq, z)~g(z) (B3) 

dz 
T 

[G'(z) ¥'(Z)]or = f G'(z) S(z) exp(--iqzz) V(z) dz (B4) 
0 

v'(T) = G'- '(T) G'(0) ¥'(0) + G ' - I ( T )  
T 

x f 6'(z)S(z) exp (-iq, z) V(z)dz. (B5) 
o 

As no inelastic scattering takes place before the fast 
electron enters the crystal ~' (0) = 0 and, using (A 6), 

T 

v'(T) = f A'(T-- z) S(z) exp (--iq, z) V(z) dz,(B6) 
o 

which is the same as (13). 
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Abstraet 

The influence of hydrogen/deuterium exchange on the 
intensity scattered by solutions of globular particles in 
neutron small-angle scattering experiments in 2H20/ 

0108-7673/83/050706-06501.50 

] H 2 0  buffers has been calculated. By separating the 
contribution of the change of the average scattering 
density of the solute from that of the inhomogeneities of 
the distribution of exchangeable hydrogens, equations 
similar to the classical equations of Stuhrman & Kirste 
© 1983 International Union of Crystallography 
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[Z. Phys. Chem. (Frankfurt  am Main)  (1965), 46, 
247-250] and Ibel & Stuhrman [J. MoI. Biol. (1975), 
93, 255-265] are obtained. But the equations contain a 
contribution from the contrast-dependent fluctuations, 
and the geometrical parameters of the particle can no 
longer be simply extracted from a contrast variation 
study, if exchangeable hydrogens are not homo- 
geneously distributed throughout the particle. Several 
examples are discussed and the potentialities of 
contrast variation in neutron and X-ray small-angle 
scattering"are compared. 

Introduction 

X-ray diffraction at various contrasts was first used by 
Bragg & Perutz (1952) to determine the overall shape 
of the haemoglobin molecule in crystals soaked in 
buffers of various ionic strengths. Benoit & Wippler 
(1960) determined the relative organization of the 
components in block co-polymers from the light 
scattering of solutions in solvents differing by their 
refractive index. Recent X-ray and neutron small-angle 
scattering experiments have usually been based on the 
theory developed by Stuhrman & Kirste (1965) who 
showed how to separate the 'shape function' of a 
globular particle from the contribution of internal 
fluctuations by measuring the intensity scattered at at 
least three contrasts. The approach assumes that the 
shape and internal organization of the particle are 
independent from contrast. The validity of this 'in- 
variant volume hypothesis' can be tested experi- 
mentally (reviewed by Luzzati & Tardieu, 1980). The 
assumption may hold in X-ray or neutron scattering 
experiments where contrast variation is achieved by 
addition of small molecules (sucrose, glycerol, salt, etc.) 
which usually do not penetrate either the particle or its 
tightly bound hydration shell. This hypothesis is 
incorrect in neutron scattering experiments where 
contrast is changed by varying the 2H20/1H20 content 
of the solvent: the scattering density of the solute 
increases linearly with that of the solvent, owing to 
2H/1H exchange. Ibel & Stuhrman (1975) have 
modified the initial equations of Stuhrman & Kirste 
(1965) to take this exchange into account. But they did 
not separate the contribution of the change of the 
average scattering density from that of the fluctuations 
around the average, although the former, for example, 
does not contribute to a contrast-dependent variation of 
the radius of gyration. 

To get a better insight--into the influence of the 
fluctuations of hydrogen exchange on the determin- 
ation of the geometrical parameters of the particles of 
solute, we explicitly separated their contribution from 
that of the average scattering density. We show which 
basis functions and parameters can be extracted from a 
set of neutron scattering experiments in buffers of 

various 2H/1H contents. Extension of the theory to 
other cases of partial permeability of the solute is 
trivial. 

Theory 

We consider a solution of identical globular particles 
uncorrelated in position and orientation. 

r and s are the vectors [moduli:r (A) and s (A-l)] 
specifying the positions in real and reciprocal space 
respectively, s = (2 sin 0)/2, where 20 is the angle 
between the scattered and incident beams, and 2 the 
wavelength (A). We assume that the intensity has been 
measured down to Smin such that D M Stain <~ 1, where D u 
is the maximal diameter of the particle. 

Ps is the scattering density of the solvent. 
pl(r, Ps) is the scattering density of a particle 

immersed in the buffer Ps. Its average value is P]-(-fis). 
vl(r) is the shape function of the particle: v~(r) = 1 

inside the particle [where pl(r, Ps) =/= Ps] and v~(r) = 0 
outside. Its integral is the volume of the particle: v~ = 
f vl(r) dr,. vl(r ) is independent of Ps if pl(r,p~) varies 
linearly with Ps. 

The intensity scattered by a particle arises from the 
fluctuations of the difference of the scattering densities 
of the solute and solvent: 

Ap~(r, Ps) = P~(r, Ps) -- Ps v~(r). (1) 

It is convenient to take the origin of exchange at the 
isopycnic point, where ~ = Ps = Pl, and to modify 
(1): 

Ap1(r, Ps) = p,(r,p,) -- Ps v,(r) + pr(r, p,--  p~). (2) 

p~(r, pz) may be split into its average value p~__~(r) and 
the fluctuations pF/(r) around this average: ~ ( r )  = 0. 
The contrast-dependent contribution to the scattering 
density, pE(r, p~ - Ps), may also be separated into its 
average value pE(r, pt - Ps) and the fluctuations pFE(r, 
PI -- Ps) around the average. Both are assumed to be 
proportional to the 2H/~H ratio of the buffer, or to 

A p = p ~ - p s  (3) 

pz(r, Ap) = pE(r, Ap) + prE(r, Ap) 

= _  aAp{vl(r ) + VFE(r)}, 

where pr~(r) = vpe(r) = 0 and 

f p~(r, Ap) dr, 
a = -- (4) 

ApVl 

is the ratio of the number of exchangeable hydrogens in 
the particle and in the volume v 1 of unperturbed 
solvent. The sign of the second member of (4) has been 
chosen to have a > 0, since exchange increases with 
increasing p,, or decreasing Ap = pz - Ps. 
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So APl(r,p s) may be written 

~p~(r,p~) = (1 - a) a ~ ( r )  - a A ~ A r )  + p~,(r) (5) 

and the structure factor of the particle is 

f~(s,ps) = dp{(1 - a) fur(S) - afve(s)} + fr,(s). (6) 

fl,v(s), fee(s) and fv~(s) are the Fourier transforms of 
v~(r), we(r) and pro(r), respectively. 

Since fv~(0) = fee(O) = 0 and f ly(0)  = v~, the 
variation of the square root of i(O,p~) with Ap is linear: 

{ i l (O ,Ps ) } l /2=f , (O ,Ps )=(1- -a )v~Ap .  (7) 

The intercept with the Ap (or p~) axis yields pt, and 
the slope (vs Ap = pz - Ps) yields the effective volume 
vc = (1 - a) v~ (Ibel & Stuhrman, 1975; Luzzati & 
Tardieu, 1980). 

For small values of s, the scattered intensity i~(s,p~) 
= (i~(S, ps)), averaged for all orientations of the vector 
s, follows the Guinier (1939) law: 

) 2 1 - - ~ R  2s 2+ . .  , (8 )  il(S'Ps) = Vc 3 

where Ro is the radius of gyration of the particle in the 
solvent Ps. The variation of R 2 with the 'contrast' Ap = 
pz-- Ps iS 

~I,FE . R ~ =  R ~  a~2,pE a2 2 
2 

Vc Vc 

1 °. ,)  
+ ~  + 2 Ap v c v c 

ilI1, F1 

2 ' v c (9) 

where R2v is the radius of gyration of the homo- 
geneous particle v~(r), and 

BI,VE = f rvve(r)dv,, 

~2,re = f d VFE(r) dv,. 

ma,Fj and m2,rl are the equivalent expressions for pFt(r). 
The equation resembles equation (6) of Ibel & Stuhr- 
man (1975) but, apart from R 2 it contains only terms Gp, 

depending upon fluctuations of the scattering density 
around its average value. 

Since the structure factor (equation 6) is a linear 
function of Ap, the scattered intensity will be a 
quadratic function: 

i~(s,p~) = (I f~(s, Ps)l 2) = (Ap) 2 a(s )  + Ap B(s) + C(s) 

A(s)  = (1 - a) 2 iu~(s) + a 2 iFe(s) - 2a(1 - a) iv.FE 

B(S) = 2(1 -- a) i~ .r t ( s ) -  2aire.e,(s) 

C(s) = let(s), (10) 

where il.v(s ) is the intensity scattered at unit contrast 
(dp = 1) by the homogeneous particle v~(r), iri(s ) is the 
intensity scattered by the actual particle in the 
isopycnic solvent Ps = Pr irE(s) = (I fvE(s)l 2), and the 
other functions are cross terms: 

iv, rE(s)= ( I~ , , , ( s )  feE(s) 12) 

iv.e,(S)= (IZ.v(s)  A,(s)l  2) 

i~,.,~E(s) = ( I feE(s) A,(s)l  2). 

D i s c u s s i o n  

Equations (9) and (10) are similar to the classical 
equations of Benoit & Wippler (1960) or Stuhrman & 
Kirste (1965), but each contains six unknowns (includ- 
ing the angle between la~ and m 1 in (9) instead of three. 
However, only three basic functions can be extracted 
from a parabolic fit of the set of scattering curves. 
Neither the variation of R 2 with (Ap) -~ nor that of 
i(s,ps ) with Ap permits one to detect that the formulas 
corresponding to impermeable particles are used 
erroneously. Nor can the difficulty be overcome by 
plotting the results against 6p = ~ - Ps instead of 
Ap = Pl -- Ps: Pl(Ps) = Pl - adp.  

Using an extension of the 'invariant volume' hypo- 
thesis, Luzzati and co-workers (Appendix 1 of Luzzati, 
Tardieu & Aggerbeck, 1979; review by Luzzati & 
Tardieu, 1980) have also shown that Stuhrman's 
equations keep their mathematical form if the scattering 
density at each point r is a linear function of the solvent 
density ps. Mathematically, the volume function vl(r) 
associated with the particle is not necessarily restricted 
to the value 1 inside the particle [of course v~(r) - 0 
outside], but may take any value between 0 and 1 at 
any point r. The value and curvature at s - 0 of the first 
characteristic function [A(s) in our notations, equation 
10] yield the zeroth (its square, in fact) and the second 
moments of vl(r) (equations 8 and 9 in Luzzati et al., 
1979). These authors have also shown that the 
hypothesis v~(r) = 1 can be tested by analyzing the 
behavior of the autocorrelation functions corres- 
ponding to the first two Stuhrman functions [A (s) and 
B(s), equation 10], as well as by comparing small-angle 
scattering and pycnometric data. To determine more 
clearly which experimentally accessible parameter 
depends upon which physical property of the particle, 
we preferred to write directly that both the average 
density of the particle and the fluctuations around this 
average vary linearly with the scattering density of the 
solvent (our equations 2-4), and to calculate the 
structure factor and scattered intensity. 

Whatever the importance of the contrast-dependent 
fluctuations, the third terms in (9) and (10) keep a 
simple significance, since they correspond to the 
scattering in the isopycnic solvent, where i(0,p~) -- C(0) 
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- 0 (Jacrot, 1976). It should, however, be kept in mind 
that a linear variation of R 2 with (Ap) -1 indicates only 
that at the isopycnic contrast the center of the 
scattering density coincides with the center of volume, 
but does not necessarily imply that this coincidence 
also takes place at other contrasts. 

a can, in principle, be determined from (7), if v l is 
known. In neutron scattering experiments, v~ is usually 
estimated from the molecular weight and the partial 
specific volume of the solute. This product yields the 
dry volume, and its identification with v x neglects the 
possible existence of internal solvation. Internal hy- 
dration pockets very probably possess the same isotopic 
composition as the bulk solvent, but if they are small 
enough they will be seen as belonging to the particle 
since they contribute to the neutron scattering factor at 
larger angles only. If low-resolution data are collected 
(typically to 30-70 ,~ for small viruses, ribosomes, 
etc.), the volume of such pockets should be included in 
v~, at the expense of an increase of the value of a 
caused by their high content in exchangeable protons 
compared to that of protein, nucleic acid, or lipid. 

In X-ray small-angle scattering experiments, the 
hydrated volume v~ is readily obtained in two ways: (1) 
from the variation of i(0,ps) with contrast (Sardet, 
Tardieu & Luzzati, 1976), since the average density of 
the particle remains unaffected by the addition of small 
molecules to the buffer; (2) by the ratio of the intensity 
scattered at s = 0 and the total scattered intensity, 
taking into account that short-range fluctuations of the 
scattering density of quasi-homogeneous particles give 
rise to an additional term in Porod's law used to 
extrapolate i(s) to large angles (Luzzati, Witz & 
Nicola'ieff, 1961). If the hydrated particle can be 
considered to be of homogeneous electron density, this 
method yields the volume v l of the particle, and if the 
water of hydration possesses the same electron density 
as that of the bulk solvent, the hydration can be calcu- 
lated from vl and the dry volume. In the case of particles 
with non-homogeneous electron density, v~ may be 
extracted in the same way from the characteristic 
function A(s) (equation 10) obtained from a contrast 
variation study where small molecules have been added 
to the buffer. [Note that the hydrated volume v~ 
determined from Porod's law in water or low-ionic- 
strength buffer might be different from the hydrated 
volume measured in the presence of sucrose. However, 
in cases where both were obtained (Le Maire, Moller & 
Tardieu, 1981), no measurable difference could be 
found.] The second technique should in principle also 
hold for neutron scattering in 2H20/IH20 buffers, but 
v~ has never been determined that way in such 
experiments. Indeed, neutron scattering at larger angles 
is usually not measured at all, and it is not known if 
Porod's law holds for particles where components are as 
segregated as in spherical viruses, for instance. It is not 
known either whether double-contrast variation would 

actually yield the value of v~ from the variation of the 
intensity at the origin: apoferritin has been investigated 
using double-contrast variation, but the interpretation 
assumes a -- 0.2, a value calculated from the chemical 
composition of the protein, but not determined experi- 
mentally (Stuhrman, Haas, Ibel, Koch & Chrichton, 
1976). 

If the exchangeable hydrogens are evenly distri- 
buted throughout the particle [vvE(r ) - 0], the 
contribution of exchange will be fully taken into 
account by the term (1 - a) 2 ia,v(s ) in (10), and (9) 
reduces to the classical equations of Stuhrman & Kirste 
(1965): at infinite contrast R2(oo) = R2v. The ad- 
ditional terms become important if many exchangeable 
hydrogens are concentrated at some places only: 
typical values of a are: a = 0.1-0.15 for proteins; a -- 
0.5-0.6 for hydrated nucleic acids (v/v, as in the 
interior of spherical viruses, Jacrot, Chauvin & Witz, 
1977); and a = 0.0-0.07 for lipids. Furthermore, even 
if the influence of the contrast-dependent fluctuations is 
negligible in the Guinier region, it may become 
measurable at higher s values, where il, v(s) [or (1 - a) 2 
x il,v(s )] becomes small. 

Some examples will illustrate this discussion. For a 
spherical particle built of a protein core (radius R 1 = 
100 ,/~) surrounded by a 20 ,/~ thick lipid shell con- 
taining no exchangeable hydrogens, REv would be 
overestimated by about 3% if it were identified with 
R2(oo). Fig. 1 shows that A(s) (equation 10) possesses 
higher subsidiary maxima than the shape function (1 - 

i ls) 
1.0 

104 

10-2 

0 

/ 
10 < 

10" 

O.05 

/'\ 

!/,. 
0.10 0.15 

2 I-I's (A-l) 

Fig. 1. Scattering curves corresponding to a spherical particle built 
of a core of protein (radius 100 A) surrounded by a lipid shell 
(thickness 20 A) containing no exchangeable hydrogens. - -  
Shape function, (1 - a) 2 il,v(s), of the solid sphere of radius 
120/I,; basic scattering function, A(s), that would be 
extracted from a contrast variation study in 1H20/2H20 buffers. 
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ct) 2 ix, v(s) and may be misinterpreted as due to a hollow 
sphere (hole size: about 0.1 R 2). If the core consisted of 
hydrated RNA (v/v), R2v would be overestimated by 
15 % and A (s) would depart from (1 - ct) 2 il, v(s) even 
more than shown in Fig. 1. Fig. 2 shows the variation 
of the ratio R2(ov)/R2, for a two-shell model (R = 
100 ;  R E = 120A) as a function of the values of~the 
'permeabilities' a~ and oL 2 of the inner and outer shells. 
R2(~)/R2 v may differ from 1.00 (for ct 1 = a2) by as 
much as 30% if one shell contains much more 
exchangeable hydrogens than the other. Fig. 3 illus- 
trates the variation of R2(~)/R2, with the ratio fl -- 
R t / R  2 for (t I = 0"05 (typical for a lipid) and ct 2 -- 0.15 
(typical for a protein), 0.50 (typical for a hydrated 
nucleic acid) and 0.75. The ratio is unity at either fl -- 0 
or fl = 1.0, and passes through a maximum that 
becomes higher and steeper as ct~ - ct 2 increases. For 

1.0 

o o5 to ~1 

Ro(oo)/Ro~ wkh d 1 and ct 2 for a Fig. 2. Variation of the ratio 2 2 
spherical particle made of two concentric shells of radii R~ and 
R 2 (R 2 > R~). R2~ = 3 R22/5 is the radius of gyration of the 
homogeneous particle possessing the same volume. R2(~ )  is the 
radius of  gyration extrapolated to infinite contrast, a~ and a 2 
represent the ratio of exchangeable hydrogens in the particle and 
in the same volume of solvent, for the inner and outer shells, 
respectively. Lines corresponding to constant values of R~(oo)/ 
R2~ are straight lines converging to (ct~ = 1, ct 2 = 1). 

R2(~ 
R2~v 
1.40 - 

1.3(; - 
~c~ - 0.75 

1.2( - ~ ~  

1.10 - 

1.oo Q5 i~ 
RJR2 

Fig. 3. Variation of the ratio R2(oo)/R~v with the ratio fl = R~/R 2 of 
the inner and outer radii of the spherical two-shell model 
described in the caption of Fig. 2. The displayed curves 
correspond to ct 2 = 0.05, and c h = 0-15, 0.5, and 0-75. 

particles built of concentric shells rich in nucleic acid, 
lipid and protein, respectively, even a larger relative 
difference between R2(~)  and R2~ may be expected: it 
reaches about 35% for the lipid-containing Semliki 
Forest Virus (B. Jacrot, personal communication). 
Small but measurable differences between A(s) and 
( 1  - ct) 2 iL~(s), and a 1.5% error in the determination 
o f  R 2 6~, are already expected for a model of spherical 
protein where hydrophilic and hydrophobic amino 
acids are distributed into the accessible (1/3 of the total 
volume) and inaccessible volumes according to the 
statistics of Lee & Richards (1971). 

The influence of inhomogeneities of the distribution 
of exchangeable hydrogens is emphasized if the 
corresponding domains do not possess the same center, 
as in a particle built of two tangent spheres of the same 
radius R (a simplified model of the colipase-detergent 
complex of Charles, S6m6riva & Chabre, 1980). If the 
scattering densities of the two moieties are those quoted 
in Charles et al. (1980), the relative difference between 
R2(c~) and R~v would be less than 0.5% and A(s) and 
(1 --  ~)2 il ,v(S ) would be identical within 1%, at least up 
to the second minimum of the scattering curve. But if 
one sphere contained no exchangeable hydrogens 
whereas the other one contained as many of them as 
does the solvent: 

A(s)=O.51f~(s) 
instead of 

( ( 1 -  ~t) 2il.~(s) = 0.25f20(s) 1 + 4ztRs ] '  

where f~(s) is the intensity scattered by a sphere of 
radius R. Similarly, R~(oo) = 3R2/5, whereas R~v = 
8R2/5. 

For many biological molecules, a good approxi- 
mation for i~,v(s) and R~, may be obtained from 
neutron-scattering experiments in 1H20 buffers. This 
holds especially for nucleoproteins such as small 
spherical viruses which scatter neutrons in 1H20 
buffers almost as solid spheres (Jacrot et al., 1977; 
Chauvin, Pfeiffer, Witz & Jacrot, 1978). For a 
spherical particle built of a 50 A thick protein shell 
surrounding a 100/k radius core of hydrated RNA 
(v/v), R~(oo) = 1.09 R2ov, whereas R~(H20) -- 1.02 
R~,. Indeed, in many cases an important difference 
between R~(oQ and R~(H20) should be taken as an 
indication that exchangeable hydrogens might not be 
evenly distributed throughout the particle. 

In model-fitting procedures such as used syste- 
matically in the study of the architecture of spherical 
viruses (review by Jacrot, 1981), inhomogeneities of 
hydrogen exchange in different regions of the particle 
are directly taken into account. The criteria for the 
validity of the model is the fit between experimental and 
predicted scattering curves at all contrasts, the scat- 
tering density of each region varying linearly with Ap. 
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Indeed, the slope of this variation and the isopycnic 
point are very different for proteins, lipids, nucleic 
acids, etc., thus allowing the determination of the 
chemical composition, including solvent, of each 
region. 

X-ray small-angle scattering is a good tool for the 
determination of the overall shape and size of globular 
particles whatever their internal structure, because the 
small molecules used to change the contrast are 
unlikely to penetrate the particle and do not give rise to 
additional internal-density fluctuations. Neutron scat- 
tering in IH20/2H20 buffers covering a large range of 
contrasts, on the other hand, provides a unique 
possibility to get an insight into the internal organi- 
zation of complex biological particles (see also Luzzati, 
Tardieu, Sardet, Le Maire, Osborne & Chabre, 1983). 

I thank especially Dr B. Jacrot, European Molecular 
Biology Laboratory Outstation, Grenoble, and Dr A. 
Tardieu, Centre de G6n&ique Mol6culaire, Gif-sur- 
Yvette, for stimulating discussions. 
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Abstract 

The application of dynamical diffraction theory to the 
'phase problem' for centric crystals shows that the 
intensities diffracted in simultaneous three-beam inter- 
actions display characteristic maxima and minima. The 
sequence in Which these appear on chart recordings is a 
sensitive function of the phase of the triplet involved in 
the interaction. The sequence is the same for all triplet 
phases of the same sign; it is reversed for those of the 
opposite sign. In earlier work a number of triplet phases 
in perfect crystals were determined. In the present 
work, several hundred triplet phases in mosaic crystals 
have been determined. Details of one of these investi- 
gations are reported in the following paper [Gong & 
Post (1983). Acta Cryst. A39, 719-724]. 
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Introduction 

In previous publications (Post, 1977, 1979), it was 
shown that the spatial distribution of the intensity 
diffracted by a centrosymmetric crystal in n-beam 
simultaneous diffraction (n > 2) is a sensitive function 
of the invariant phase of the structure-factor triplet 
involved in the interaction. This indicated that the signs 
of such phases could be retrieved directly from the 
diffracted intensities. Some success was finally achieved 
and several examples of experimental phase determina- 
tion were included in the works cited above. These were 
based on photographic recordings of intensities trans- 
mitted through perfect and slightly imperfect thin 
crystals of germanium and aluminum oxide. 

A major objective of the present work involves the 
demonstration that similar phase effects may be 
displayed in n-beam diffraction by mosaic crystals, 
comparable in quality, or lack of it, to crystals 
commonly used in crystal structure investigations. This 
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